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Abstract: This study adopted the Exponential Generalized Autoregressive Conditional
Heteroscedasticity (EGARCH) model to analyze seven air pollutants (or the seven variables in
this study) from ten air quality monitoring stations in the Kaohsiung–Pingtung Air Pollutant Control
Area located in southern Taiwan. Before the verification analysis of the EGARCH model is conducted,
the air quality data collected at the ten air quality monitoring stations in the Kaohsiung–Pingtung
area are classified into three major factors using the factor analyses in multiple statistical analyses.
The factors with the most significance are then selected as the targets for conducting investigations;
they are termed “photochemical pollution factors”, or factors related to pollution caused by air
pollutants, including particulate matter with particles below 10 microns (PM10), ozone (O3) and
nitrogen dioxide (NO2). Then, we applied the Vector Autoregressive Moving Average-EGARCH
(VARMA-EGARCH) model under the condition where the standardized residual existed in order
to study the relationships among three air pollutants and how their concentration changed in the
time series. By simulating the optimal model, namely VARMA (1,1)-EGARCH (1,1), we found that
when O3 was the dependent variable, the concentration of O3 was not affected by the concentration
of PM10 and NO2 in the same term. In terms of the impact response analysis on the predictive
power of the three air pollutants in the time series, we found that the asymmetry effect of NO2 was
the most significant, meaning that NO2 influenced the GARCH effect the least when the change of
seasons caused the NO2 concentration to fluctuate; it also suggested that the concentration of NO2

produced in this area and the degree of change are lower than those of the other two air pollutants.
This research is the first of its kind in the world to adopt a VARMA-EGARCH model to explore the
interplay among various air pollutants and reactions triggered by it over time. The results of this
study can be referenced by authorities for planning air quality total quantity control, applying and
examining various air quality models, simulating the allowable increase in air quality limits, and
evaluating the benefit of air quality improvement.

Keywords: air pollutant control area; air pollutants; photo chemical pollution factor; impact response
analyses; multiple statistical analyses

1. Introduction

According to air quality monitoring reports from the Environmental Protection Administration,
major pollutants causing the Pollutant Standard Index (PSI) [1] to exceed the air quality standard
are particulate matter (PM10) and ozone (O3). Taiwan’s air quality data are released to the public in
the form of pollution standards index (PSI) values, following the procedure identical to that of the
United States Environmental Protection Agency. The nation’s PSI was formulated and promulgated
in 1994 by the Environmental Protection Administration (EPA) based on the daily concentrations
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of five air pollutants: particulate matter with particles below 10 microns (PM10), sulfur dioxide
(SO2), nitrogen dioxide (NO2), carbon monoxide (CO), and ozone (O3). Air quality in central and
southern Taiwan has deteriorated, especially after large-scale pollution sources were set up one after
another. As population density continues to rise in tandem with the development of industries and
transportation, it results in many pollutants affecting humans’ habitats; consequently, people have
become more aware of pollution treatments [2,3]. Among the treatments, air quality management
stands out as an imperative issue. Since air is highly dispersive or can be transported long range, if the
total emission tolerance of pollutants in one area is not kept below that area’s capacity, the pollutants
will not only influence the air quality in that area, but also in adjacent regions [4,5].

Air pollution is a well-known environmental problem associated with urban areas around the
world [6,7]. Various monitoring programs have been used to determine air quality by generating
vast amounts of data on the concentration of each of the previously mentioned air pollutant in
different parts of the world. The large data sets often do not convey air quality status to the scientific
community, government officials, policy makers, and in particular to the general public in a simple and
straightforward manner [5]. Up to now, PSI has been developed and disseminated by many agencies
in the U.S. Canada, Europe, Australia, China, Indonesia, Taiwan, etc.

Models analyzing the degree of fluctuation can largely be divided into two categories: predictable
volatility and unpredictable volatility (or stochastic volatility). The former belongs to the Generalized
Autoregressive Conditional Heteroscedasticity (GARCH) group (which includes the exponential
GARCH (EGARCH) model adopted in our study), and can predict the fluctuations in the current term
using all of the information acquired from the previous term. The biggest difference between the two
models lies in their estimation procedures [8,9]. The EGARCH model is similar to the GARCH model
as it can also capture other properties of a financial time series, such as volatility clustering. If the
fluctuation rate at t-1 is high, it will be high at t as well. In other words, an impulse occurring at t-1
also has an effect on the fluctuation rate at t. Moreover, since the value adopted in the formula is
the logarithm of the variance rather than the variance per se, there is no need to impose any limits
on the parameters in the EGARCH model. As a result, the EGARCH model automatically meets
the requirement that the variance must be positive, which is one of its main advantages. In general,
applying maximum likelihood estimation under conditions allowed by the model helps to increase the
optimization speed and makes the optimization results more reliable [8,10].

This study analyzed the data obtained from the ten automatic air quality monitoring stations in the
Kaohsiung–Pingtung Air Pollutant Control Area via factor analysis for multivariate statistics, in order
to determine the air pollution factors that most influenced the air quality in the Kaohsiung–Pingtung
area, namely the photochemical pollution factors (PM10, O3, and NO2). Next, on the condition that a
standardized residual existed, this study explored how air quality in the Vector Autoregressive Moving
Average (VARMA)-EGARCH model fluctuated according to seasons. Since the analysis of results can
reflect the relationships among air pollutants in real time, the authorities can refer to the results when
applying and examining various air quality models, simulating the allowable increase in air quality
limits, and evaluating the benefits of air quality improvement.

2. Experimental Method and Methodology

2.1. Selection of Air Quality Monitoring Stations

The Kaohsiung–Pingtung Air Pollutant Control Area, established by the Environmental Protection
Administration in southern Taiwan, consists of ten ordinary air quality monitoring stations (Meinong
station, Nanzi station, Qianjin station, Renwu station, Zuoying station, Xiaogang station, Daliao station,
Linyuan station in Kaohsiung, and Pingtung station and Chaozhou station in Pingtung). In these ten
ordinary air quality monitoring stations, Meinong, Pingtung, Daliao, and Chaochou are located in
sub-urban belonging to non-industrial zone; Nanzi, Renwu, Zuoying, Xiaogang and Linyuan belong
to industrial zone; Cianjin is located in the urban area.
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The ten air quality monitoring stations are located on the Pingtung Plain, scattered across areas
from 30 to 100 m above sea level. The mean annual temperature of the area is from 24 to 25 ◦C;
the average temperature of the warmest months (July to August) exceeds 30 ◦C, while that of the
coldest months (January to February) remains above 18 ◦C. The average annual rainfall is between
1500 and 2000 mm. We chose the Kaohsiung–Pingtung Air Pollutant Control Area because this region
includes Kaohsiung City, which suffers from the most severe air pollution in Taiwan. The city, home to
approximately 2.77 million people, has eight industrial areas and a large steel plant. We chose this
Air Pollutant Control Area as our research subject because the air quality is usually poor due to its
industrial activities in addition to the large number of cars and motorcycles in the city.

We collected 420 complete air pollutant monitoring statistics between 1 January 2019 and 30 May
2020 and analyzed seven pollutants (or seven variables): SO2, NO2, CO, PM10, O3, THC, and CH4

(please refer to Figure 1 for the locations of the ten air quality monitoring stations chosen for this
study). These statistics were acquired by analyzing data collected over 24 h by the EPA’s autonomous
monitoring stations in the area. The objective in studying the statistics of up to one and a half years is to
reflect the temporality effect on air quality; thus, we were able to observe the EGARCH model during
different periods with different observation frequencies and elucidate whether variables in different
time series present different information. The tool adopted for corroboration was EVIEWS 10.0Atmosphere 2020, 11, x FOR PEER REVIEW 4 of 16 

 
Figure 1. Air quality monitoring locations in Kaohsiung–Pingtung area, Taiwan. 
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Figure 1. Air quality monitoring locations in Kaohsiung–Pingtung area, Taiwan.

2.2. Data Selection and Compilation

Prior to the analysis of the EGARCH model, we analyzed three factors using factor analyses
in multiple statistical analyses that influences air quality in the Kaohsiung–Pingtung area:
the photochemical pollution factor, the fuel pollution factor, and the organic pollution factor, employing
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factor analysis for multivariate statistics. Next, we selected the photochemical pollution factor, which is
the most influential factor determining air quality in the Kaohsiung–Pingtung area, to study the
VARMA-EGARCH model.

2.3. ARIMA Modeling

A time series
{
xt; t = 0,±1,±2, . . . . .

}
is ARMA (p, q) if it is covariance stationary and can be

represented as
xt = ϕ1xt−1 + . . .+ ϕxpt−p + εt + θ1εt−1 + . . .+ θqεt− q (1)

where ϕp , 0, θq , 0, and εt are the innovations with N(0, σ2
ε) and σ2

ε > 0. The parameters p and q are
called the autoregressive [AR(p)] and the moving average [MA(q)] orders, respectively. When a time
series does not appear covariance stationary, the differencing procedure may be applied to make it
stationary. Then, the ARMA (p, q) model can be applied to the stationary differenced time series and
model so constructed is called ARIMA (p, d, q) model where d denotes the order of differencing [11,12].
The parameters ϕ and θ have been estimated using maximum likelihood method in the present study.

An inspection of autocorrelation function (ACF) and partial autocorrelation function (PACF)
helps in identifying the orders AR(p) and MA(q). In addition, more objectively defined criterions
such as Akaike Information Criterion (AIC), Hannan–Quinn Information Criterion (HQIC), Bayesian
Information Criterion (BIC) and Final Prediction Error (FPE) can also be used to identify the correct
orders p and q [12,13].

2.4. ARMA-EGARCH Modeling

Conditional mean formula:

rt = a0 +
m∑

i=1

airt−i +
n∑

j=1

b jEt− j , E|Ωt−1 ∼ N(0, ht)

Conditional variance formula:

ln(ht) = α0 +

q∑
i=1

(γi
Et−i√

ht−i
+ αi

 |Et−i|√
ht−i
− E(

|Et−i|√
ht−i

)

) + p∑
j=1

β j ln(ht− j) (2)

Et−i√
ht−i

> 0 represents good news on the market while Et−i√
ht−i

< 0 reflects bad news on the market;

where, γi = 0 indicates that the degree of air pollution has a symmetrical effect in reaction to news impact.
If γi < 0, it suggests that the degree and fluctuation of air pollution incurred by air pollution

shock are more significant than the situation when air pollution shock does not result in air pollution;
in other words, a leverage effect can be observed when γi < 0. To determine whether the three GARCH
models are applicable to the time series analysis, we first needed to confirm whether the time series
has an ARCH effect; this was tested in this study using the Lagrange Multiplier (LM) test proposed by
Engle [14]. Since it is necessary for the residual of the conditional mean formula in the GARCH model
to follow the white noise process, all possible orders (p, q) of the GARCH model must be compared
with each other via trial and error. To determine whether or not residuals reached white noise, we later
adopted the modified Q-statistics proposed by Ljung and Box [15] to analyze the residual of each series.
However, the p and q orders of the model selected via trial and error might be subject to over-fitting.
To solve this issue, we used the Akaike Information Criteria (AIC) [16] and Schwartz Bayesian Criterion
(SBC) [17] to analyze the model under the principle of parsimonious parameterization.
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2.5. Setting of the Model

This study used the following statistical principles and methods to conduct its simulation and
predictive modeling for the selected photochemical pollution factors. The purpose was to explain the
essence and meanings of the fat tail test, the Ljung–Box sequence test, and the ARCH test.

2.5.1. Fat Tail Test

The main argument in this section is related to the last argument of the previous section—in the
light of a non-explained empirical fact, it is preferable to try to describe it first with the available tools
before increasing the model complexity. There are two main approaches to explain fat tails through
Gaussian-based models. First, the fat tail test appears because the volatility of asset returns is dynamic.
Therefore, looking at the unconditional distribution as described by histogram plots or kernel density
plots, we can see heavy tails but they are mostly due to the time varying volatility. Second, fat tails
appear because asset returns depend, in a non-linear fashion, on other factors which are distributed
according to a Gaussian law. Results of examining the skewness, kurtosis, and Jarque–Bera normal
distribution can be used for determining whether the distribution of modeling errors has fat tails.

2.5.2. Ljung–Box Sequence Test

It was necessary to test whether the residual items in the regression model have sequence
correlation before estimating the ARCH and (E)GARCH models. If the residual items have sequence
correlation, the squared residual items will be examined to see if it has an ARCH effect. As such, it is
very important to check if the residual items have sequence correlation before estimating the ARCH
and (E)GARCH models.

2.5.3. Examination of the ARCH Effectiveness

If the standard deviation of a time series is stationary, we can say that the variance of the time
series is homogeneous, or heterogeneous, or vice versa. Before applying data to a heterogeneous
variance model, we should examine data to see if they contain heterogeneous variance. This study
adopted the Lagrange Multiplier (LM) proposed by Engle (1982) and Ljung and Box Q statistics [14] to
test whether the variance of the time series is heterogeneous.

2.5.4. Impact Response Analyses

The impulse response function (IRF) is used to study the impact of the structural disturbances on
the variables in a VAR model over time; in other words, other variables’ dynamic response pattern to
an exogenous impulse when the said impulse impacts a variable. This study adopted the Cholesky
method in dealing with orthogonalization, in order to analyze the intertemporal dynamic effects
of indices across nations in the model, and the degree of dynamic interplay among those indices.
The formulae are as follows:

Yt = u +
∞∑

i=0

Φiεt−iΦi = I, i = 1, 2, . . . , ∞ (3)

In Formula (3), i represents the variable responding to an impulse. Error εt−1 can be interpreted
as unexpected impulses in t − i. To examine how an impulse of a one-term delay influences the current
term variables, one can refer to Formula (4).

@Yt

@Et−1
= Φ j,k,z (4)

In the above formula, the coefficient factor on row j, line k, formed a consecutive function over
time, called the “impulse response function”.
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This study adopted the AIC proposed by Akaike [16] to select suitable lagged variables, which were
represented as follows:

AIC(m) = T × ln(SSR/T) + 2m (5)

where, m indicates the number of variables in the model, T represents the number of samples of the
three air pollutants, and SSR shows the sum of squares of the error terms.

3. Results and Discussion

3.1. Application of the Results of Factor Analysis

As mentioned above, this study divided air quality in the Kaohsiung–Pingtung area into three
major factors according to the results of the factor analysis for multivariate statistics. It then chose the
most important factor, the photochemical pollution factor, as its subject. This factor included three
air pollutants: PM10, O3, and NO2 (listed by the degree of their factor loadings). Moreover, since the
data series had seasonality and cyclicity, the seven pollutant variables were standardized during factor
analysis. The formula for standardization is as follows:

Zν,t =
Yv,t − µt

σt
t = 1, . . . . . . w

where, Yv,t represents the original series, and µt, σt indicate the average and standard deviation in
period 1~w.

3.2. Simulations of the Photochemical Pollution Factor with Models

3.2.1. Analysis of the Basic Properties of the Three Air Pollutants

The three air pollutants selected for the photochemical pollution factor of this study were PM10,
O3, and NO2. Table 1 presents the analysis results of the three air pollutants’ basic properties between 1
January 2019 and 30 May 2020, including: average, standard deviation, skewness, kurtosis, and statistics
obtained from the Jarque–Bera normality test. Firstly, in terms of kurtosis, the kurtosis coefficients of the
three air pollutants were larger than the coefficient of normal distribution (which was 2), suggesting that
each variant had the characteristic of a seasonal time series (in other words, pollutant concentrations
vary according to seasons). In terms of skewness, the three pollutants’ skewness leaned to the right
(meaning that their skewness coefficients were all positive). Among them, NO2 had the highest
value of 4.3 when compared with PM10 and O3, which had values of 2.3 and 0.8, respectively (the
smaller the value, the more stable the concentration). This result indicates that the concentration
of NO2 normally remains low. However, many statistics showed sudden spikes in the past, which
corresponded to the results of Kuo and Ho [18]. This corroborated with the view that NO2 had the
strongest asymmetric effect, meaning that the concentration and degree of fluctuation of NO2 formed
in Kaohsiung were lower than those of the other two pollutants. Since NO2 is least affected by the
change of seasons, it is more difficult to predict its concentration fluctuations. Air pollutants that
are non-compliant with the air quality standard in Kaohsiung and Pingtung are mainly PM10 and
O3; hence, when the concentrations of PM10 and O3 increase, air pollution becomes more severe,
especially during the winter. This result is reflected by the skewness of the two in Table 1, which is
not high. Regarding NO2, an increase in its concentration can only be observed in Kaohsiung and
Pingtung during certain periods in winter and early spring; since the usual contribution of NO2 to air
pollution was less than PM10 and O3, it had a higher skewness coefficient. Kaohsiung City, home to
approximately 2.77 million people, has eight industrial areas and a large steel plant. Air quality is
usually poor due to the industrial activities in those areas and the large number of cars and motorcycles
in the region. In addition, the Kaohsiung–Pingtung area is susceptible to pollutants from external
sources brought by the north-eastern seasonal wind, and pollutants traveling from northern and central
Taiwan. To make matters worse, pollutants are trapped in the area by an inversion caused by the
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seasonal wind as it descends from the Central Mountain Range. In addition, emissions from factories
and cars concentrated in Greater Kaohsiung make poor air quality more likely in the region during
winter. Base on the above reasons, the air pollution in this area has been quite serious over the years.

Table 1. Basic properties of the three pollutants in the photochemical pollution factor.

Items O3 (ppb) PM10 (µg/m3) NO2 (ppb)

Mean 35.7 83 63.1
Median 32.6 78 59.3

Maximum 204 427 488
Minimum 8.6 20 16.6
Std. Dev. 0.8 0.8 0.4
Kurtosis 7.5 11.7 6.1

Skewness 0.8 2.3 4.3
Jarque–Bera 2518 2054 796
Probability 0.0 0.0 0.0

Sum Sq. Dev. 112.6 124.4 88.3
Observations 420 420 420

Table 1 also shows that the statistics obtained from the Jarque–Bera normality test are higher
than the critical value (degree of freedom is 2, X2

0.05,2 = 5.99) at a 5% significance level, reflecting the
hypothesis that all variants refuse normal distribution. This means that all the three air pollutants had
two fat tails, which proves that seasonality had a significant effect on them.

3.2.2. Examination of ARCH Effectiveness

The LM (Lagrance Multiplier) statistics [19] can be applied to examine whether the ARCH effect
exists in a number sequence. The LM statistics is TR2 with T being the number of samples, and R2

being the determination coefficient value obtained using the ordinary least squares (OLS) regression;
T × R2 obeys the chi-square distribution with P degrees of freedom. When the model LM statistics is
obvious, the ARCH effect exists in the number sequence. The statistics of three air pollutants listed in
Table 2 indicates that the conditional variance of the three air pollutants shows a strong ARCH effect
(that is, all T × R2 values were significant at a 5% significant level). Hence, the ARCH effectiveness is
appropriate for explaining these three air pollutants.

Table 2. Results of Autoregressive Conditional Heteroscedasticity (ARCH) effectiveness for 3
air pollutants.

Q O3 (ppb) PM10 (µg/m3) NO2 (ppb) Critical Value

(Lagged Variables) (TR2) (TR2) (TR2) x2
(0.05,k)

1 15.57 356.21 140.36 3.84
2 18.98 367.29 154.22 5.99
3 21.22 381.00 163.87 7.82
4 24.58 390.54 179.78 9.49
5 30.16 393.58 192.65 11.07
6 33.20 402.63 216.60 12.59
7 36.61 411.29 231.47 14.07
8 38.14 416.85 249.54 15.51
9 39.52 438.20 266.33 16.92

10 42.65 468.13 289.51 19.68

Note: All TR2 values less than 5% indicate “obviousness”.
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3.2.3. Ljung–Box Sequential Examination

Whether the residual in the regression model has serial correlation must be examined before the
ARCH and EGARCH models are estimated. If the residual has serial correlation, the square of residual
appears to have the ARCH and EGARCH effects. In this study, such examination was carried out using
the Ljung–Box examination method; the results are listed in Table 3. All the examination statistics
for L-B-Q (K) are smaller that the critical value so that null hypothesis, which is not conforming to
alternative hypothesis, cannot be rejected. Hence, residuals of the various number sequences do not
have serial correlation; this confirms to the phenomenon of white noise so that the model disposition is
appropriate for these 3 air pollutants.

Table 3. Ljung–Box Sequence Test for 3 air pollutants.

L-BQ (K) O3 (ppb) PM10 (µg/m3) NO2 (ppb)
Critical Value

x2
(0.05,k)

1 1.92 0.84 0.57 3.84
2 2.62 2.01 0.95 5.99
3 5.18 3.36 2.64 7.82
4 6.79 5.69 4.26 9.49
5 9.00 7.17 6.61 11.07
6 10.48 8.60 8.47 12.59
7 12.46 11.43 10.69 14.07
8 12.89 12.52 11.12 15.51
9 13.62 13.77 12.06 16.92
10 16.31 15.95 12.95 18.31

To run the Ljung Box test by hand, we must calculate the statistic Q. For a time series γ of length n:

Q(m) = n(n + 2)
m∑

j=1

γ2
j

n− j′
(6)

where: γj = the accumulated sample autocorrelations, m = the time lag.
We reject the null hypothesis and say that the model shows lack of fit if

Q > X2
1−α,h

where X2
1−α,h is the 1 − α quantile of the chi-square distribution with h degrees of freedom.

3.2.4. Choosing the Best EGARCH Model

In order to subsequently simulate the best VARMA-EGARCH model, we tested different
combinations with vector models VARMA and EGARCH. We chose the best one from the multiple
VARMA (p, q)-EGARCH (p, q) models we created for the simulated analysis. Table 4 presents the
analysis results. Among the models, VARMA (1,1)-EGARCH (1,1), the one with the smallest AIC and
SC values, was chosen as the best model because it could best capture the fluctuations of air quality in
different seasons.
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Table 4. Analysis results of the best combination of photochemical pollution factor Vector
Autoregressive Moving Average (VARMA) model and Exponential Generalized Autoregressive
Conditional Heteroscedasticity (EGARCH) model.

Vector Model

EGARCH Type EGARCH (0.1) EGARCH (0.2) EGARCH (1,1) EGARCH (2,1)

AIC SC AIC SC AIC SC AIC SC

VARMA (1,0) 8.121 8.136 8.053 8.062 7.713 8.020 7.952 7.993
VARMA (2,0) 8.054 8.101 7.959 8.016 7.620 7.795 8.051 8.071
VARMA (0,1) 8.012 8.077 7.994 8.023 7.602 7.793 7.952 8.032
VARMA (0,2) 7.953 7.998 7.921 7.965 7.577 7.708 7.893 8.011
VARMA (1,1) 7.902 7.926 7.865 7.915 7.523 7.542 7.621 7.779
VARMA (2,1) 7.883 7.903 7.839 7.868 7.531 7.603 7.659 7.724

3.3. Simulation Results of the Photochemical Pollution Factor VARMA (1,1)-EGARCH (1,1) Model

According to the results of an extra factor analysis for multivariate statistics, factors under
the photochemical pollution factor can be listed, with their factor loadings from big to small,
as P 10 > O3 > NO2. Photochemical reactions in the atmosphere are mainly triggered by radiation given
off by the sun. Once pollutants (or precursors) absorb photons and enter an electronically excited state,
they react with other pollutants and form O3. In light of this phenomenon, this study designated O3 as
the dependent variable and PM10 and NO2 as independent variables and applied them to the VARMA
(1,1)-EGARCH (1,1) model, in order to study how they change in the time series. Table 5 presents the
relativity and trend of concentration of PM10, O3, and NO2 in the time series under simulation with the
VARMA (1,1)-EGARCH (1,1) model. This vector model can prevent bias when estimating conditional
variance because it reflects the structural changes of the three air pollutants in different seasons.

The simulation results in Table 5 show that the concentration of O3 (the t-statistic of b0 was −0.75,
meaning that it did not reach the significance level since it was <1.96) in the term could not be estimated
according to the concentration of PM10 in the same term. In contrast, the concentration of PM10 with a
lag time of one and two terms influenced the concentration of O3 in the current term (the t-statistics of
b1 and b2 were 2.56 and 2.04, respectively, meaning that they reached the significance level since they
were >1.96). In terms of NO2, we found that the concentration of NO2 in the current term could not be
used to estimate the concentration of O3 in the same term (the t-statistic of c0 was 0.32, meaning that
it did not reach the significance level since it was <1.96). However, the concentration of NO2 with a
lag time of one term influenced the concentration of O3 in the current term (the t-statistic of c1 was
3.79, meaning that it reached the significance level since it was >1.96). Moreover, the concentration
of NO2 with a lag time of two terms still influenced the concentration of O3 in the current term (the
t-statistic of C2 was 2.92, meaning that it reached the significance level since it was >1.96). However,
the effect of NO2 with a lag time of two terms on the concentration of O3 was not as remarkable as
that of NO2 with a lag time of one term. From the above analyses of the three air pollutants, we
found that the concentration of O3 was not affected by that of PM10 and NO2 in the same term, but
after a lag time of one term, the concentration of O3 was influenced by PM10 and NO2 with a lag
time of one to two terms. The results help to explain why PM10 and NO2 are the most important
precursors for photochemical reactions in the atmosphere. Upon being released into the air from
various sources of emission, PM10 and NO2 do not immediately start photochemical reactions with
the sun; rather, they only start reacting with the sun after a one-term lag and form the final product,
O3. The photochemical reactions continue into the second term because PM10 and NO2 last longer
in the atmosphere, thus being able to produce O3 in the second term. However, from the simulation
results in Table 5, it is found that the t-statistics of b2 and c2 (2.04 and 2.92, respectively) with a lag time
of two terms reached the significance level, but their significance was less remarkable than that of b1

and c1 (2.56 and 3.79, respectively) with a lag time of one term. From the results, we can conclude
that when PM10 and NO2 form in the atmosphere, we cannot use their concentrations to estimate
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the concentration of O3 in the current term. Rather, we must wait until they have been involved in
photochemical reactions for a while, as that is when O3 starts to form. In other words, only PM10 and
NO2 with one- or two-term lag can influence the formation of O3 in the current term. Furthermore,
one-term lagged PM10 and NO2 have stronger impacts on the concentration of O3 than those with a lag
time of two terms. Regarding O3, its concentration in the current term was significantly impacted by O3

with a lag of one term (the t-statistic of a1 was 7.03, meaning that it reached the significance level since
it was >1.96), but was not significantly impacted by O3 with a lag of two terms (the t-statistic of a2 was
1.14, meaning that it did not reach the significance level since it was <1.96). These results suggested
that although the concentration of O3 in the current term is affected by that of O3 with a one-term lag,
the concentration in the current term is less impacted by O3 with a two-term lag, as photochemical
reactions start to decrease when the day proceeds into the evening. In this study, Kaohsiung–Pingtung
Air Pollutant Control Area is located in the tropics. The annual average temperature is greater than
20 ◦C, and the photochemical reaction is the most obvious from noon to afternoon and in summer.
In addition, the degree of air pollution generated in this area is also the most serious from noon to
afternoon. As a result, O3 and PM10 concentration are usually higher during this time.

In regard to the analysis of γi,t in the EGARCH model, the t-statistic of γ1 in the VARMA
(1,1)-EGARCH (1,1) model was a significant at 3.13, with a value of −0.082 (<0). This result suggests
that when the concentrations of PM10 and O3 change drastically in winter, air quality in Kaohsiung
and Pingtung will become noncompliant with the air quality standard. The Kaohsiung–Pingtung
area is susceptible to air pollution because it is a populous industrial hub located in southern Taiwan.
It has a large number of cars and scooters, as well as facilities that release pollutants regularly (namely
chimneys). During winter, air quality is particularly prone to being noncompliant with the air quality
standard set by the Environmental Protection Administration due to high PM10 concentration. On the
other hand, air pollutants quickly disperse in the air in summer; thus, there are fewer days with
poor air quality than in the winter. This phenomenon reflects the leverage effect (when γ1 < 0) in the
EGARCH model [20]. Taiwan has done a magnificent job in containing COVID-19 and has received
critical acclaim globally. The pandemic barely has any impact on businesses and industries in the
nation. According to statistics up to the end of August 2020, there were only 493 confirmed cases,
and only seven people died from COVID-19, a tiny fraction of the nation’s 23 million population.
The monitoring stations mentioned in this study were still operating during the pandemic and were
not compromised by COVID-19 at all. That is, during this period, the monitoring results did not show
any abnormal phenomena.
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Table 5. Parameter estimation during the process when photochemical pollution factor VARMA (1,1) was paired with EGARCH (1,1).

Vector
Model a0 a1 a2 b0 b1 b2 c0 c1 c2 d1 α0 α1 α2 β1 γ1

VARMA (1,0) 0.96 −2.31 3.143 1.03 0.51 0.62 −1.12 0.18 2.63 −1.69 0.56 0.26 −0.163
t-statistic 1.24 0.96 −0.77 2.14 −3.14 −1.55 0.78 0.66 0.53 3.22 1.16 4.55 4.42

VARMA (2,0) −3.44 1.99 0.87 3.46 −2.59 0.97 −1.52 0.53 1.32 0.64 2.21 1.58 0.33 −0.035
t-statistic −1.25 2.55 1.57 −1.96 1.41 2.64 0.32 1.63 0.09 −3.11 1.14 −0.76 2.14 2.56

VARMA (0,1) 1.97 1.14 1.25 2.14 0.16 3.02 1.19 1.84 3.21 −0.34 1.03 2.3 −0.321
t-statistic 0.94 −3.63 −0.88 2.45 −1.16 2.46 1.51 −0.71 2.65 0.09 −2.03 1.99 1.93

VARMA (0,2) 2.01 0.96 3.03 1.13 0.06 1.59 −0.16 0.92 0.56 0.31 1.55
t-statistic 2.51 0.94 2.17 0.88 −2.12 3.12 1.22 1.17 −2.77 −0.26 4.02

VARMA (2,1) −0.29 2.016 2.23 2.31 1.3 3.01 −0.63 1.59 0.86 2.07 −0.17 2.03 1.14 −1.67
t-statistic 1.38 3.46 −1.65 −1.10 2.05 1.16 1.54 2.62 1.14 2.63 −0.33 −1.68 0.82 2.31

VARMA (1,1) 1.37 1.13 5.14 −2.42 0.07 3.41 0.96 2.19 0.17 1.56 5.68 0.71 0.52 5.26 −0.082
t-statistic 0.31 7.03 1.14 −0.75 2.56 2.04 0.32 3.79 2.92 3.41 3.02 2.65 0.7 8.16 3.13

Note: (1) O3 = ao + a1O3(t−1) + a2O3(t−2) + b0PM10(t) + b1PM10(t−1) + b2PM10(t−2) + c0NO2(t) + c1NO2(t−1) + c2NO2(t−2) + d1εt−1 ht = α0 + α1ε2
t−1 + α2ε2

t−2 + β1ht−1 with εt~N(0,1). A large
ε2

t−1 or ht−1 gives rise to a large σ2
t . This means that a large ε2

t−1 tends to be followed by another large ε2
t , generating, again, the well-known behavior of volatility clustering in time series.

(2) γi,t = ci0 +
∑pi

j=1 bi jγi,t− j + ui,t. (3) If γi = 0, it indicates that air quality has a symmetrical effect on the reaction to news shock. If γi < 0, it suggests that air quality has a leverage effect on
the reaction to news shock. (4) A t-statistic value ≥ 1.96 means that the parameter reaches the significance level. In contrast, a t-statistic value < 1.96 suggests that the parameter does not
reach the significance level.
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3.4. The Predictive Power of the VARMA (1,1)-EGARCH (1,1) Model on the Three Air Pollutants

Based on an impact responses analysis, we applied the VARMA (1,1)-EGARCH (1,1) model to
estimate the three air pollutants of the photochemical pollution factor, in order to test the predictive
power and degree of the model under the influence of leverage effect (Table 5 shows that γ1 < 0).
Figures 2–4 display the estimated concentrations of the three air pollutants with the first 400 data from
the sequence. The estimation results indicated that the correlation coefficients (r) of the predictive
power of PM10, O3, and NO2 were 0.832, 0.814, and 0.773, respectively, fully reflecting the analysis
results mentioned previously (Kuo and Ho, 2018). In other words, the concentration of NO2 did
not change as drastically as the other two pollutants because NO2 was less affected by the change
of seasons, suggesting that it had the strongest asymmetric effect, or NO2 has the least influence
on the GARCH effect when its concentration fluctuations are triggered by the change of seasons,
which makes it more difficult to predict its concentration fluctuations. Moreover, the EGARCH model
could effectively reduce bias resulting from conditional heteroskedasticity when estimating correlation
coefficients. The model enabled the presentation of diverse forms when it comes to dynamic variance
modeling, and could accurately estimate conditional variances among the three air pollutants.
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Figure 2. Estimation of the concentration of PM10 with the VARMA (1,1)-EGARCH (1,1) model.
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Figure 3. Estimation of the concentration of O3 with the VARMA (1,1)-EGARCH (1,1) model.
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4. Conclusions

This study adopted the VARMA-EGARCH model to explore the changes and influences of
variation of air pollutants in the time series. This approach is unprecedented because there are barely
any published studies on how multiple air pollutants change and influence each other in an Air
Pollutant Control Area with the EGARCH model. Moreover, since the parameters of the traditional
multivariate GARCH model are too complex, while the multivariate GARCH model cannot fully
represent multivariate analysis results, we applied dummy variables from the EGARCH model to the
variant formula to enable it to accurately estimate the variances of the three air pollutants and capture
the seasonal fluctuations of air quality in the VARMA-EGARCH model. This study also applied the
VARMA (1,1)-EGARCH (1,1) model to explore the relativity and trend of concentration of PM10, O3,
and NO2 in the time series. When PM10 and NO2 form in the atmosphere, their concentrations cannot
be used to estimate the concentration of O3 in the current term. Rather, we must wait until they have
been involved in photochemical reactions for a while, as that is when O3 starts to form. In other words,
only PM10 and NO2 with one- or two-term lag can influence the formation of O3 in the current term;
one-term lagged PM10 and NO2 have stronger impacts on the concentration of O3 than those with a lag
time of two terms. Finally, the estimation of the three air pollutants using the VARMA (1,1)-EGARCH
(1,1) model indicated that the concentration of NO2 did not change as drastically as the other two
pollutants because NO2 was less affected by the change of seasons. This suggested that since NO2 had
the strongest asymmetric effect, it was thus more difficult to predict its concentration fluctuations.

We adopted the Pollution Standards Index for evaluating the degree of air pollution. On the other
hand, the Air Pollution Index (API) is based on the Ambient Air Quality Standard GB 3095-1996 and
only assesses SO2, NO2, and PM10. It was abolished and supplanted by the Air Quality Index (AQI),
which is based on GB 3095-2012 and evaluates SO2, NO2, PM10, PM2.5, O3, and CO; the AQI is mainly
adopted for studying the degree of influence of air quality on human health. We did not study the
variation of PM2.5 concentration because PM2.5 was included in PM10; the subject of this study was not
air pollutants’ impact on human health, but rather the formation mechanism of various air pollutants
and the interplay among these pollutants over time.

In this study, the EGARCH model made it possible to track the degree of change of air pollutants
in each time series in real time. It also took the heterogeneity of each air pollutant variant into
consideration, an aspect ignored in past studies. The research findings can serve as a reference for
the government when it comes to the application and certification of air quality models, simulation
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of models for a maximum allowable limit of increments, evaluation of air quality improvement
schemes, and planning of strategies. In addition, the results of this study can also be referenced by
authorities for planning air quality total quantity control, applying and examining various air quality
models, simulating the allowable increase in air quality limits, and evaluating the benefit of air quality
improvement. Furthermore, we will refer to the API and AQI methods if we are going to delve
deeper into studies related to air pollution in the future and could be useful in the future extension of
their work.
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